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Geometric Theory of Functional Differential Equations

Jack K. Hale

1. Introduction.

Functional differential equations provide a mathematical model for
a physical system in which the rate of change of the system may depend upon
its past history; that is, the future state of the system depends not only
upon the present but also a part of its past history. A special case of

such an equation is a differential difference equation

x(t) = £(t, x(t), x(t-r))

where r is a nonnegative constant. For r = O, this is an ordinary differential
equation., A more general equation, which we choose to call a functional dif-

ferential equation, is one of the form

(1) K(t) = £(t, x,)

where x is an n-vector and thelsymbol X,

a function defined on some interval [o-r, o + A), A >0, then for each fixed

is defined as follows. If x is

t in [0, 0 + A), x

values are given by xt(e) = x(t +6), -r =0 s 0. In other words, the graph

is a function defined on the interval [-r, O] whose

of X, is the graph of x on [t-r, t] shifted to the interval [-r, O].
To obtain a solution of (1) for t z g, one specifies an initial function
® on the interval [o-r, o] and then extends @ to t 2z o by relation (1).
Functional differential equations have been discussed in the literature
NASA Offices and Research Centers
Only
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since the early 1700's, beginning with John Bernoulli [1] and L. Euler [2].
Early investigations were usually devoted to particular equations to which
were applied specialized techniques. Also, due to the difficulties that
were being encountered in the development of a theory for ordinary differential
equations, an extensive theory for functional differential equations was
naturally postponed. One of the most prominent proponents of a more systematic
development of the subject was Volterra [3,4] who pointed out very clearly
the applications to the theory of viscoelastic materials and the interaction
of biological species. Since Volterra, other applications have arisen in
various aspects of biology, medicine, econometrics, number theory and problems
of feedback control. Also it is hard to visualize an adaptive control
system which would not use in a significant manner a part of its past history
and a model for such systems might be a functional differential equation.

These extensive applications have led to a rapid development of
the theory during the past twenty years and, as a consequence, a few books
are now available on the subject (Mishkis [5], Pinney [6], Krasovskii [7],
Bellman and Cooke [8], Halanay [9]). E1l'sgol'tz [10] also has two chapters
devoted to differential difference equations. The book of Minorsky [11] con-
tains material on differential difference equations and an excellent discussion
of specific applications. Hahn [12] includes a section on the use of
Lyapunov functions for a discussion of stability.

Even though system (1) is obviously a problem in an infinite
dimensional space, there has been some reluctance to attempt to discuss the
- problem in thislcontext. In fact, most of the papers in the literature
attempt to gain as much information as possible about the solutions of (1)

by considering (1) as defining curves in an n-dimensional vector space.




Krasovskii [7] was the first person to indicate the importance of studying
(1) from the point of view that the solutions define curves in a function
space. Krasovskii was interested in the stability properties of solutions
of (1). 1In earlier works, El'sgol'tz [10] had shown that sufficient con-
ditions for the stability of a solution of (1) obtained by an application
of Lyapunov functions (functions on a n-dimensional vector space) could be
stated in a manner completely analogous to those for ordinary differential
equations. E1'sgol'tz also shows by simple examples that it is impossible
to brove the converse of Lyapunov's theorems in this context. By interpreting
the solutions of (1) as curves in a function space, Krasovskii proved that
the converse theorems of Lyapunov were valid if Lyapunov functionals were
employed rather than Lyapunov functions.

The fundamental work of Krasovskii provided the direction and
encouragement for the development of a qualitative or geometric theory of
functional differential equations. Of course, after someone has first pointed
out such a fundamental idea, it is so natural that one wonders why the theory
did not always proceed in that direction. 1In fact, the state of any system
at time t should be that part of the system which uniquely determines the
behavior of the system for all time greater than t. In this context, the
state of a system described by (1) should be the function x, ‘and not the
vector x(t). Of course, this implies that the orbits of the system will
take place in a function space, but the results that are obtained and the
basic understanding that is achieved seem to outweigh the complications intro-
duced by working in a function space. In a sense, such an approach to a
discussion of (1) implies that all aspects of (1) will have to be Aiscussed

anew, even linear equations for which t does not appear explicitly. But,
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fortunately, we shall see that the reinvestigation of even these simple

systems leads to a much better understanding of them and also indicates methods
of attack for common problems as well as the posing of new problems for more
complicated systems.

This report is a discussion of some of the aspects of functional
differential equations which are of particular interest to the author. Many
important areas of current investigation are not mentioned at all. Also,
the discussion concerns only retarded equations and the reason for this is
that the theory for the other types is not as well developed and is in a
rapid state of flux.

Let us now be more specific. Our function space will always be
taken to be the space C = C([-r, O], Rn) of continuous functions mapping
the interval [-r, O] into an n-dimensional real or complex vector space

R', For any @ in C, we define |¢| by the relation

”q>" = ma‘x_rgeéo lq)(e)l

where |x| is the norm of a vector x in R".
Suppose a is a given real number (we allow a = - ®), { is an

open subset of C and f(t, ¢) is defined for t 2z a, ® in Q. If o is

a given real number in [a, ®)(if a = - ®, [a, ®)

(-, ©0)) and @ is a
continuous function on [o-r, 0] with o, in Q, then we say x = x(o, @)

is a solution of (1) with initial value @ at o if x is defined and

continuous on [o-r, o + A) for some A >0, coincides with ¢ on [o-r, 0],

x, is in 0 and x satisfies (1) for o st <o + A,

The following results are not difficult to prove and, in fact, the




proofs can be supplied by following the methods in Coddington and Levinson [13]
for ordinary differential equations or an application of well known fixed point
theorems. If f(t, ¢) is continuous for t z a, @ in Q, then there exists
a solution of (1) with initial value @ at o for any o in [a, ®») and

any @ such that mc is in Q. If, in addition, for any bounded closed subset
of @, there exists a continuous function K(t) 2 0, t 2z a, such that

| £(t, ®)| = K(t) for all t 2z a, 9 in B, then every solution of (1) can
be continued in t until the boundary of B is reached. If, in addition,
f(t, @) is locally Lipschitzian in @, then for any 0 2 a and @ such
that @_ is in Q, there is only one solution x(o, @) of (1) with initial

value @ at o and xt(O, ®) depends continuously upon ¢, @ and t.

2. General properties of solutions. In the following, we shall always
assume that f(t, @) 1is continuous for t 2 a, ® in & and for any
bounded subset B of {, there exists a continuous function KX(t), t 2z a,

such that |£(t, 9)]

A

K(t) for t2za, @ in B, Also, we shall suppose
that the solution x = x(o, @) of (1) with initial value @ at o exists
for all t =z o, xt(o, @) depends continuously upon t, o, 9, and a unique-
ness property holds.
If x = x(0, ) 1is a solution of (1) with initial value @ at o,
we define a trajectory of (1) through (o, @0) as the set of points in {0, @) X Q
given by ((t, xt(c, ®)), t 2 0}. If (1) is autonomous, that is, f(t, @) is
independent of t, +then we choose o0 = O and designate the solution by

x = x(9). 1In the autonomous case, we have the important semigroup property

(2) %, (@) = % (x(9)), t, 7z 0.
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In the autonomous case, we define the path or orbit of (1) through @ as

the set of points in C given by Utgoxt(@)-

Some words of caution are in order. First of all, a trajectory of
eq. (1) through a given point (o, QG) is only defined for t 2z o. For a given
(o, @0), there may not exist a trajectory to the left of o. In fact, if there
is a trajectory through (o, mo) defined for an s < o, then ®(6) would
have to be differentiable on an interval a =6 = ¢ for some «a < 0.

Secondly, the uniqueness broperty only holds for t z o. Therefore,

this does not exclude the possibility that two distinct trajectories of (1)

coincide after some finite time. As an example, consider the equation
L] 2
(3) x(t) = -ax(t-1)[1-x (t)],

which has the solution x(t) = 1 for all t. If C, is the set of functions
® in C with @(0) = 1, then the uniqueness of solutions to the right implies
that the solution x(p) satisfies x,(®) equal to the constant function 1
for t 2z 1. Consequently, the corresponding trajectories and paths of distinct
solutions coincide after one unit of time. If we consider the mapping which
takes (o, wo) into (t, xt(o, ¢)), then this example shows that this mapping
will not in general be 1-1.

Even if this mapping is 1-1, it will not be a homeomorphism if
*r >0. In fact, the hypotheses assumed on the function f in (1) imply
that if @ ©belongs to a closed ball in C then the solution xt(o, P)
belongs to a compact subset of C for t 2 o + r. This follows from the
fact that the functions (xt(o, @)} are uniformly bounded together with

their first derivatives for any t =z o + r.



A function x* defined and continuous on (-w, a] is said to be

a solution of (1) on (-w, a] if for every o in (-®, a] the solution

x(o, x;) of (1) with initial value x; at o exists on [0, a] and

xt(o, x:) = x: for t in [o, a]. An element ¥ of C is in (o, 9),

the w-limit set of a trajectory through (o, wc), it there is a sequence

of nonnegative real numbers t , t - as n -« such that thn(d,w)—WH -0
as n — o where x(o, ) is the solution of (1) with initial function o

at o. The set A(o, ), the a-limit set of a trajectory through (o, ¢0),
is defined in a similar manner except with negative values of t. If (1) is
autonomous, we will omit o and write Q(9p) and A(P). A set M in C

is called an invariant set if for any @ in M, there exists a function x¥,

depending on @, defined on (-=, ®), x: in M for t in (-w, o), x:

such that, for every o in (-w, »), the solution x(g, x:) of eq. (1)

=(P’

with initial value x  at o satisfies xt(o, x;) = x: for t z 0. Notice
that to any element of an invariant set there corresponds a solution of (1)
which must be defined on (-w, o).

The above definition of an invariant set may at first glance not

seem to be appropriate since trajectories are in general defined only on a

semiaxis, but the definition is justified by the following lemma.

Lemma, If @ is such that the solution x(c, ®) 1is defined and bounded on
[o-r, =), then Q(o, ®) 1is a nonempty compact connected set and dist(xt(o, P),
Q(o, )) 20 as t »o ., If @ is such that there is a solution x(o, )

of (1) defined and bounded on (-®, o], xc(c, ®) = 9, then Ao, ®) is a
nonempty, compact, connected set and dist(xt(o, ?), 2P)) 20 as t o -=,

If (1) is autonomous, then A(c, @), (o, ¢) are also invariant sets.
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The proof of this lemma follows along the same lines as the proof
of the same facts in ordinary differential equations (see Hale [14]). The
invariance property of the w and «a-limit sets of an autonomous system have
been extended in a convenient manner by Miller [15] to periodic and almost
periodic systems. We also remark that these same properties can be extended
to the case in which the retardation interval is infinite if the compact open
topology is used on C (see [14] for the autonomous case). For the application
of these concepts to stability, see the paper of LaSalle in these proceedings

and also [1h4],

3. Some geometric properties of linear autonomous equations and the variation

of constant formula. In a few words, one could say that the ultimate goal in

the qualitative theory of differential equations is a characterization of
those classes of equations whose trajectories have similar topological
properties. Even for ordinary differential equations, such a characterization
is in its infancy for dimensions greater than 2. As a consequence, one is
forced to discuss the properties of trajectories in a neighborhood of some
set and, in particular, in a neighborhood of simple invariant sets.

The simplest invariant set of (1) is a constant solution (equilibrium

or critical point) and a study of the trajectories near this soultion leads

naturally to linear functional differential equations. However, in this section, we
wish only to discuss autonomous linear equations; that is, equations of the

form
() x(t) = Lx,) °E° [ [an(e)Ix(t + o)

where 1 is an n X n matrix function whose elements have bounded variation
on [-r, O].

The characteristic equation of (k4) is
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(5) det A (L) =0, A(XA) = -foewdn(e)
-r

and to any M satisfying (5), there exists a solution of (4), x(t) = eth,
A (Mb = O defined on (-w, ®), Also, if A is a root of (5) of multiplicity
m(A), then there are exactly m linearly independent solutions of (L) of the
form p(t)ekt where p(t) 1is a polynomial in t. A natural problem to
investigate is the possibility of expanding any solution of (4) in terms of
the basic functions associated with each root of (5). This problem has been
studied in detail and the reader may consult Bellman and Cooke [8] for specific
results and references. However, since our aim is to determine as much
information as possible about the solutions of (4) without resorting to an
expansion of the solution, we proceed in a different direction. The theory
which is summarized below may be found in Shimanov [16], Hale [17].

If x = x(p) is the solution of (1) with initial value ¢ at O,

then we define the operator T(t), t 2 0, .on C, by the relation
(6) T(6)p = x,(?)-

The operators T(t), t 2 0, are a strongly continuous semigroup of bounded
linear operators on C with T(0) = I, the identity. For any t z r, T(t)
is also compact. This latter property leads to a great simiplification in
the theory but many of the properties described below do not depend upon
compactness. This fact seems Yo indicate that much of the theory will be
applicable to linear equations with hereditary effects involving

the first derivative of x. Since these results are not yet complete, we
confine out attention to (4).

The properties of T(t) permit one to define the infinitesimal
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generator A of T(t) as

(7 P6) , -rs6s50

(8 = a0y = ° ran(e) Je(e)

The spectrum of A, o(A ), coincides with those values of A which satisfy
(5).
The properties of T(t) (compactness is not needed) imply that the

point spectrum of T(t), Po(T(t)) is given by the relation
. At .
(8) Po(T(t)) = (" , A in a(A)}.

If A is in o(A),  then MX(A) denotes the generalized eigenspace
of A ; that is, the maximal set of @ in C which are annihilated by powers
of A - AL. The subspace MX(A) is finite dimensional, is invariant

under T(t) and if @, = (¢,,...,94) is a basis for M (4), then

(9) T(t)e, = ¢XeBXt , 9(0) = o(o)eBXe , -r s 60 50,

A

the solutions of (4) behave as an ordinary differential equation and can be

where the only eigenvalue of B, is A. Relation (9) implies that on MX(A)’

defined on (-w, ®), Also, one easily shows that the solutions of (%) on
MX(A) coincide with those solutions of (4) of the form p(t)eXt where
p(t) 1is a polynomial in t and A is a root of (5). Therefore, the con-
struction of ¢ can be performed as follows. Let pl(t)e)\'t,...,pd(t)e;\'t be
a basis for the solutions of (4) of the form p(t)eXt where p(t) is a
polynomial in t and A is a root of (5) of multiplicity 4. If we define

A8 .
mj(e) = pj(e)e , ;T £6 50, §=1,2,...,d4, 0 = (Ql,...,md), then @, is
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a basis for Mk(A) and the matrix B, 1is determined by the relation
°x(9) = @X(o) exp (BXG), -r =0 s0,

Our next goal is to find a subspace of C which is invariant under
T(t) and complementary to MX(A)'

The author has been informed by K. Meyer that the existence of such
a complementary subspace follows by an application of some general results on
bounded linear operators and the theory of semigroups of transformations.
- However, in some applications, it seems necessary to have an explicit repre-
sentation of this complementary subspace. Also, such an explicit representation
allows one to interpret results in language familiar to ordinary differential
equationists. We now give a recipe for finding this subspace and thereby

-

obtain an explicit coordinate system in C.

This is accomplished by means of the bilinear form

o0
J ¥(g - 6)[dn(6)le(&)dt

r o .

(10) (v, @) = ¥(o)o(0) -f

defined for all ® in C and ¥ in C* = C ([-r, O], R°¥), where R™* is
the n-dimensional space of row vectors. The equation "adjoint" to (4) relative

to the bilinear form (10) is defined as

(11) ¥(s) = -/ y(s-6)[dn(6)],

and its associated characteristic equation is obtained by finding conditions

on A which will ensure a solution of (11) of the form ce ™ ; that is,

det A'(A) = 0, (&' is the transpose of A).

Let ql(s)e'xs,...,qd(s)e_xs, be a basis for the solutions.of eg. (11)
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of the form q(s)e_xs, where q{s) is a polynomial in s and A is a root
. -A6

of (5) of multiplicity d. If we define WJ(G) = qj(e)e ,056=sr,

¥ = col (Vy,...,v ), (¥,,0,) = (Wi,wj), i,j =1, 2,...,d, then one can

show (see [6],[ 7]) that (¥,, ®,) is a nonsingular matrix, which without

loss in generality can be taken to be the identity.

If ¥,, ¢, are chosen as above; and if we define

A

ao]
"

{p in C : 9 = ¢,b for some constant vector b}

A
(@ in C: (¥, 9) =0

(12)

O
1]

then every element @ in C can be uniquely decomposed as

P
=9 +CPQ’

(13) . Q
¢ =0b, b= (¢, ?), P in Q

Furthermore, the subspace Q 1is invariant under the action of T(t).

The above results do not use the compactness of T(t) but only
the fact that the dimension of MX(A) is finite. If T(t) 1is compact for
t 2 r, then for any 1 >0, there are only a finite number of roots of
(5) with ReA = y. If A=A(Y) ={r: Reh2z v, det A(A) = 0}, then
the above process can be carried out for each A in A and one obtains a

decomposition of C as follows

o = P, Q)

P(A)

{p in C: @ = @AP}

Q(A) {p in cC: (yA: @) = 0}

(1)
0, = ((b)‘l,...,%s) y ¥, = col(‘l’xl,...,‘i’)"s)

BpP
¢,(6) = 9,(0)e™ , .rsoso0,
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where o, , ¥, are bases for the solutions of (4) and (11) of the type
J J
described above for Xj in A and the spectrum of BA is precisely A. The

spaces P(A) , Q(A) are both invariant under T(t) and there exist € >0,
K >0 such that

(15) lz¢e)el = kel 7= Yol , o in o).

The decomposition (14) and property (15) give us a very clear
picture of the behavior of the solutions of a linear autonomous eq. (4).
Also, we can now define concepts which would not have been very meaningful

in R". For example, we can say that system (4) has a saddle point at O if

no roots of (5) lie on the imaginary axis. This definition coincides with
the definition for ordinary differential equations and the trajectories in C
behave in essentially the same manner as they do for an ordinary differential
equation. To see this, simply let A= {A : Re A >0, det AA) = 0} and
observe from relation (15) that the solutions on Q(A) approach zero as

t »® for Y = 0. The solutions of P(A) are defined on (-®, ®©) and
approach zero as t ~§-m . The picture is indicated below.

P(A)

Q(4)

A natural problem to investigate is the preservation of the saddle
point property when (4) contains some nonlinear perturbations of order higher

than the first near @ = 0. The basic tool for this investigation is the
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variation of constants formula which has already been supplied by Bellman and

Cooke [8]. In fact, if X, isthe nXn matrix function defined on [-r, O]
by
o , -r208<0

X (6) =
© I , 6=0

then the solution of the equation
(16) x(t) = L(x.) + N(t, x.)

with the initial value @ at o 1is given by
t

xt(e) =‘[T(t_o)¢c](e) +f [T(t-T)XO](G)N(1, x.)dt , -r £ 0 s 0.
g

For simplicity in the notation we will write this as

t
(17) x, = T(t-0)o_ + ] T(t-T)X N(7, x )d7 .
g

If the space C 1is decomposed as in relations (14), then eq. (17)

can be written as

t

P P P

X, = T(t-c)(pd + faT(t-'r)X0 N(T, XT)dT
(18) .

Q Q. Q

X, = T(t-c)cpc + foT(t-T)XO N(T, xT)dT

P
X_t-Xt+Xt

where for simplicity we have let P = P(A) , Q = Q(A). Since P is a finite
dimensional space spanned by & = ®(A), the first equation in (18) can be
written in a form resembling an ordinary differential equation. In fact,

eqs. (18) are equivalent to
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X, = oy(t) + x%
(19) 5(t) = B y(t) + ¥(0)N(t, x.)
Q t Q
X = T(t_a)qa0 + [ T(t-T)XO N(T,XT)dT .

g

4, Applications of the preceding theory.

4.1. Behavior near an equilibrium point of an autonomous equation.

Suppose no roots of (5) lie on the imaginary axis and the space C is decom-

posed as in (14) with A

{A: Re A >0, det A(A) = 0} and consider the

equation

(20) x(t)

L(xt) + N(xt)

where N(0) = O and there exists a continuous function n(e) , P20, n(0) =0
such that |5(9,) - N(05) | = Weloy-0gl, for loyl = o, logl 5 0 .

A discussion of the séddle point property for eq. (20) must proceed
with extreme care. At first glance, one might attempt to find a specific
relationship between the trajectories of eq. (20) and those of eq. (5). How-
ever, such an investigation appears to be very difficult as the following

simple example indicates, Consider the equation
x(t) = 2ox(t) + N(xt) , @>0,

where N(@) satisfies the above conditions. This equation is the variational
equation relative to the solution x =1 of eq. (3). The decomposition

in C 1is given by

=" + 0% ’ o¥(8) = 9(0) , o(6) = 9(8) - ¢(0), -rs 050,
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The subspace P is one dimensional and the trajectories of %(t) = 2ax(t)
behave as e2om. On the other hand, the paths associated with trajectories
with initial values on Q@ reach the zero function in at most r wunits

of time., For the pertrubed equation, it seems unreasonable to suppose that
so many paths would posses such a property.

The following statements are a consequence of much more general
results in Hale and Perelld [18] and assert that there is a very close
relationship between the inital values ol solutions of eq. (20) and eq. (5)
which approach zero as t - or t - -, 1In the statements below Pp
and pQ are the projection operators defined by the decomposition given
in relations (1k4).

I) Let XK be the constant defined in relation (15). There exists
a & >0 such that the set S of all @ in C such that ||q>QH s 8/2k
and the solution x(p) of eq, (20) satisfies th(m)n £8,tz0, is
homeomorphic through pQ to the set of ¢ in Q with ||| = 8/2K. Further-
more, the set S is tangent to Q at O and any solution of eq.(20)
with initial value in S approaches zero as t — o,

II) There exist constants X,® such that the set R of all ¢
in C such that HQPH s 8/2K and the solution x(®) of eq. (20) satisfies
th(Q)H =% for t =0 is homeomorphic through p, to the set of ¢ in
P with |9|| = 8/2K. Furthermore, the set R is tangent to P at 0 and
any solution with initial value in R approaches zero as t — -=,

III) If we extend the sets S, R of I) and II) by adjoining all the
points in paths of solutions starting in S and R for positive and negative
values of t, respectively, and call these extended sets s*, R*, then
S* is positively invariant and R* is negatively invariant with respect

to system (20).
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These results are proved by analyzing in detail the integral equations
in (18). Only the integral equations (18) and the behavior of the solutions
on P, Q are used and not the particular manner in which the decomposition of
C was made. Therefore, much of the detailed theory of the previous section
is unnecessary for this problem. However, more detailed knowledge of S, R
are needed in applications and then an explicit representation of P and .Q
is required.

If some of the roots of (4) lie on the imaginary axis, then results
corresponding to the above have not been given, but the manner in which they
are proved in [18] and the results of Shimanov [19] on stability in critical
cases seem to indicate that the problem can be solved.

The theory of the bifurcation of an equilibrium point that occurs
in ordinary differential equations (see [1l]) can be extended to functional
differential equations by using the integral eqs. (18). These results will
appear in the Ph.D. thesis of N, Chafee from Brown University and may be
briefly summarized as follows. Suppose that the functions L, N in eq. (20)
depend upon a small parameter X, say L= L(p, Z), N = N(p, £) and that
N(p, &) satisfies the same hypotheses of smallness in @ as before. Also

suppose the linear equation

has two simple characteristic roots of the form a(Z) X ib(Z) , a(0) = O,

a(Z) >0, 0<Z s Z, b(Z) >0, 0= 2= % and the remaining characteristic
roots have negative real parts. If, in addition, the zero solution of the
equation

k(t) = L(Xt, O) + N(Xt, O)




-18-

is asymptotically stable, then there exists a Zl > 0 such that the

system

x(t) = L(xt, ) + N(xt, I) ,0<ZIs zl ,

has a nonconstant periodic solution x*(t, Z) such that x*(t, 0) = 0.

4.2 Equations with a small parameter. Consider the system

x(t) = L(xt) + N(t, X5 €) (21)

where L is the same as in eq. (4) and N(t, ¢, €) is some smooth
function of t, o, e.' An interesting case in the applications is when

N(t, ¢, 0) = 0 (that is, eq. (21) is near to linear) and also some of the
roots of eq. (5) lie on the imaginary axis. The problem is to determine as
much information as possible concerning the solutions of eq. (21) for €

small.

If N(t, ¢, €) = N(t + T, ¢, €) for some T >0, then it is of
interest to determine necessary and sufficient conditions for the existence
of periodic solutions of period T. To do this, one makes use of the fact

that the equation
(22) %(t) = L(x.) + £(t)

has a T-periodic solution for a T-periodic forcing function f if and
only if

T
(23) J y(e)e(t)at =0

o

for all T-periodic solutions of the adjoint eq. (1l) and then develops

a method of successive approximations to discuss the more complicated eq.
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(21). 1In the method of successive approximations, one usually encounters
systems of the form (22) where f does not satisfy the orthogonality relations
(23). On the other hand, the first approximation invloves a number of independ-
ent parameters corresponding to the number of linearly independent T-periodic
solutions of the unperturbed equation Xx(t) = L(xt). These independent
parameters are then used to attempt to make the othogonality relations (23)
hold for all approximations.

For ordinary differential equations, this process can be made
rigorous by a modification of the original differential equation by some
terms which involve the independent parameters. The necessary and sufficient
conditions for the =xistence of T-periodic solutions result in conditions
on the parameters which will make the modified terms vanish. The resulting
equations are the so called bifurcation equations (see Cesari [20], Hale [21]
for details).

‘For functional differential equations, the modifications necessary
in eq. (21) are not so obvious and, in fact, Brownell [22] states that it is
impossible. This seems to be the case for eq. (21) where the modifications
would take place directly on eq. (21). However, Perell6 [23] has shown that
the process of Cesari and Hale can be extended to functional differential
equations if the modifications are performed on the first equation in
relations (18). These modifications of Perelld take place in a finite
dimensional space. In this manner, Perell6 determines necessary and suf-
ficient conditions for the existence of T-periodic solutions of eq. (21)
and shows by means of examples that the theory can be used.

Other more complicated oscillatory phenomena can occur in eq. (21).

For ordinary differential equations, the most widely used method for a
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discussion of equations with a small parameter is the method of averaging
of Krylov, Bogoliubov, Mitropolski, and Diliberto (see [24] and [21].) The
simplest case of this method for equations of the form (21) is the following.

Consider the equation
(2) %(t) = eg(t, x,)

where g(t, ®) 1is almost periodic in t uniformly with respect to ¢ in

any compact subset of C. If
T

.1
go(@) = lim —T-f g(t’ (P)d't,
T—> o o)

are the solutions of the equation
y(t) = eg (v,)

related in any manner whatsoever to the solutions of (24) for € small? For

a small retardation interval, namely, r = €s, Halanay [25] proved that the

solutions of the ordinary differential equation
(25) 2(t) = eg (2(t))

(here z(t) represents both an n-vector and a function on C whose values

for each 6 in [-r, O] are equal to z(t)) yield valuable information about
the solutions of (25) for € small. In fact, if (25) has an equilbrium

point whose associated linear variational equation has all solutions approaching
zero exponentally as t — o , then eq. (24) has an asymptotically stable

almost periodic solution for € small and positive. This same result also

holds true with an arbitrary retardation r. This extension as well as much
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more information on averaging was obtained by Hale [26] by using the decom-
position (18). The important remark to be made is that the extension of
the method of averaging #o functional differential equations is accomplished
by modifying the equations only through the first relation in egs. (18).
Results of this type seem to indicate once more the advantages of treating

eq. (21) as a problem in an infinite dimensional space.

L.3 Asymptotic theory of linear systems. Consider the system

(26) x(t) = [A + A(t)]x(t) + (B, + B(t)]Ix(t-r)

where A, B are constant matrices and A(t), B(t) are small in some sense

for large t. If A is a root of the characteristic equation,

~Ar
det [AI - A -Be 1=0,

then the system

(en x(t) = A_x(t) + B x(t-r)

has a finite number of linearly independent solutions of the form p(t)ext

where p(t) is a polynomial in t. Bellman and Cooke [27] considered (26)

for x a scalar and have given conditions on A(t), B(t) which will ensure

that (26) has solutions which are asymptotic at ® to the solutions of (27)

of the form p(t)eXt; ‘The basic difficulty that arises in this type of
discussion is the determination of an ordinary differential equation associated
with (27) which has solutions of the desired type. The next step is to show
that this ordinary differential equation is a good approximation to (27) relative

to the type of solutions being considered. In [27], this ordinary differential
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was obtained by some clever manipulations on equation (26) and, as a consequence,
the degree of approximation to (27) resulted in some rather annoying terms

which to be made small required some peculiar hypotheses on A(t), B(t). An
application of the theory of section 3 leads directly to an ordinary differential
equation and furthermore leads to results of the type in [27] except with

weaker hypotheses on A(t), B(t) (see Hale [28]). As in the discussion of

the method of averaging and the work of Perell6 on periodic solutions, this
indicates the advantages of making transformations on eq (18) directly

rather than on the original functional differential equation.

5. The Floquet theory. Systems of the form

(28) x(t) = £(¢t, xt) , f(t+ 2rm 9) = £(t, @),

where f(t, ¢) is linear in @ and continuous in t, ® have received
considerable attention in the last few years by Hahn [29], Stokes [30], Halanay
[9] and Shimanov [31]. The immediate goal has been to extend the Floquet
theory for ordinary differential equations to functional differential equations.

Following Stokes [30], if x(p) is a solution of (28) with initial

value @ at 0, then xt(¢) defines a continuous, linear mapping of C
into C for each fixed t 2z 0. If we define the operator T(t) by
T(t)p = xt(m), then T(t) is compact for t 2z r and the characteristic
multipliers of (28) are defined as the elements of the point spectrum of
T(2r)(the monodromy operator). To each characteristic multiplier p £ 0

of (28), there is a solution of (28) of the form p(t)eXt where p(t) =




23

p(t + 2r) and p = eX2". Finding a basis for all solutions of (28) associated

A2r

with a given characteristic multiplier p =€ yields a finite dimensional

subspace P, of C which is invariant ander T(2rk), k = 1,2,.... If o,
is a basis for Px and T(2")¢X = ¢.B where BX has only the eigenvalue

A2
A, then T(t)@x = Ax(t) exp (th) where A, (t + ar) = Ax(t). This shows
that on the generalized eigenspaces of the monodromy operator, the Floquet
representation of the solutions is valid. Stokes [30] also shows that the
behavior of the solutions of (28) for large values of t is determined by
the characteristic multipliers.

Shimanov [31] has shown that the space C can be decomposed in a
manner similar to the decomposition in section 3 for the autonomous equation.
These results can therefore be used to supply the natural extension of the
application in section 4,1.

The book of Halanay [9] contains an extensive discussion of periodic
systems with some very interesting results which are peculiar to functional
differential equations. Halanay also proved that a necessary and sufficient

condition for the existence of a 2r-periodic solution of

x(t) = £(t, x) + a(t) , &t + 2r) = g(t)

ar
is that [ y(t)g(t)dt = 0 for all 2r-periodic solutions of the adjoint

equation. OThis fact together with the decomposition of C ala Shimanov will
yield an extension of the results of Perellf in section 4.2,

The next natural problem is the extent to which the Floquet represent-
ation is valid on all of C. This seems to be an extremely difficult question
and part of the difficulties arise from the fact that the spectrum of the

monodromy operator may contain only a finite number of points. This immediately
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eliminates the possibility of the expansion of a solution of an arbitrary
periodic system in terms of the generalized eigenspaces (notice the contrast
with autonomous equations). Hahn [29] has given some conditions on the
equation (28) which are supposed to ensure that solutions can be expanded in
terms of the generalized eigenspaces but I have been informed by J. Lillo
that there is a crucial error in the proof of these results. Lillo has a
paper in the proceedings on this question.

Halanay has proposed that the following may be the proper statement
of Floquet's theorem for system (28): there exist linear operators P(t),
U(t), where P(t + 2rm) = P(t) and U(t) is a semigroup of operators associated
with an autonomous linear functional differential equation such that T(t) =
P(t)U(t), where T(t) is the linear operator associated with (28). It

would be interesting to either prove or disprove this fact.

6. Behavior near and existence of periodic solutions of autonomous equations.

The next order of complications in the development of a qualitative theory

for functional differential equations is the behavior of trajectories near a
4

periodic solution of an autonomous equation. Even for ordinary differential

equations, this problem is not completely resolved and, therefore, it is

not unexpected that complications are arising in functional differential

equations. The basic tool for ordihary differential is the method of sections
of Poincaré, but the fact that the mapping induced by a functional differential
equation is not a homeomorphism leads to difficulties in the application of
this method. Another very important tool is the introduction of a local
coordinate system in a neighborhood of the closed curve generated by a periodic

solution and then discussing in detail the differential equations in these
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coordinates. This seems to be a natural attack on the problem for functional
differential eqﬁations but, at present, no one has been able to find an
appropriate coordinate system,

In spite of this, one nontrivial and interesting result has been

obtained by Stokes [32] without the introduction of a local coordinate system.

Suppose the system
(29) x(t) = £(x,)

has a nonconstant periodic solution. In the space C +this solution generates
a closed curve I'. Define the concept of asymptotic orbital sta